$284(45), 169(25), 168(100), 167(52), 77(40), 46(26)$.
Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{5}$: C, 72.82; H, 4.83; $\mathrm{N}, 22.33$. Found: C. 72.72; H, 4.87; N, 22.09.

Reaction of the Trisubstituted Chloroiminium Chloride $2 f$ with Tetrabutylammonium Azide. The salt 2 f was prepared on a $0.022-\mathrm{mol}$ scale. After the addition of the azide solution (0.055 mol) at $50-60^{\circ} \mathrm{C}$, stirring was continued at this temperature for 15 h . The solvent was distilled at atmospheric pressure, and the distillate was collected in a receiver cooled with a dry ice-acetone bath. The final pot temperature was $160^{\circ} \mathrm{C}$. The distillate was reacted with excess bromine at $0^{\circ} \mathrm{C}$, the solvent and excess bromine were removed in vacuo at room temperature (20 mm), and the residue was examined by GLC. There was no detectable 1,2 -dibromocyclohexane present in this mixture.

The pot residue from above was diluted with water and extracted with dichloromethane. The extract was washed successively with dilute hydrochloric acid, sodium bicarbonate solution, and saturated salt solution. The organic phase was dried over magnesium sulfate and evaporated in vacuo. The residue was chromatographed on silica gel. The cyanamide was eluted with hexane-benzene-ethyl acetate ($5: 4: 1$) and several more polar products were removed from the column with ethyl acetate. The crude N-methyl- N-phenylcyanamide (1.15 g) was distilled in vacuo as before to give a pure specimen ($0.94 \mathrm{~g}, 32 \%$) identical with the material prepared from 2a.

Basification of the acidic fraction from above gave, after ether extraction and the usual manipulation, nearly pure N-methylaniline ($1.43 \mathrm{~g}, 61 \%$).

Reaction of the Chloroiminium Chloride 2 g with Azide Ion. To a solution of the iminium salt $\mathbf{2 g}(0.0055 \mathrm{~mol})$, prepared from 1 g and phosgene as described above, was added a dimethoxyethane solution of tetrabutylammonium azide (0.014 mol) and the resultant was heated at reflux temperature for 18 h . The solution was poured into water and extracted with dichloromethane. The dried (sodium sulfate) extract was evaporated in vacuo, and the residue was chromatographed on a column of silica gel using hexane-benzene (4:1) as the eluting solvent. The first fractions contained diphenylamine, the cyanamide $5 \mathbf{b}$ ($0.350 \mathrm{~g}, 35 \%$), identical with the material prepared from 2b, was eluted next, and this substance was followed by the starting material ($0.50 \mathrm{~g}, 43 \%$).

Reaction of 21 b with Azide Ion. Synthesis of $\mathbf{2 2 b}$. To a suspension of the iminium salt $21 \mathbf{b}(0.0055 \mathrm{M})$ in dimethoxyethane (10 mL) was added a dimethoxyethane solution of tetrabutylammonium azide (0.015 mol) at $50-60^{\circ} \mathrm{C}$ in the usual manner. A red-orange solid precipitated immediately. This substance was collected by filtration and dried in vacuo. It could not be recrystallized, and therefore a sample was dried in vacuo for analysis. The substance thus obtained had mp $210^{\circ} \mathrm{C}$ dec, gave positive Beilstein and silver nitrate tests, and decomposed, with gas evolution and the formation of N, N-dicyclohexylbenzamide, on treatment with aqueous ethanolic potassium hydroxide. A mass spectrum of the red salt could not be obtained: UV $\left(\mathrm{CH}_{3} \mathrm{OH}\right) 382 \mathrm{~nm}(\epsilon 40800)$; IR $\left(\mathrm{CHCl}_{3}\right) 1560 \mathrm{~cm}^{-1}$; $\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 0.83-2.17(\mathrm{~m}, 36 \mathrm{H}), 2.40-3.10(\mathrm{~m}, 4 \mathrm{H}), 3.24-3.96(\mathrm{~m}, 4 \mathrm{H}), 6.53-6.77$ (m, 4 H$), 6.87-7.33(\mathrm{~m}, 6 \mathrm{H})$.

Anal. Calcd. for $\mathrm{C}_{38} \mathrm{H}_{30} \mathrm{ClN}_{5}$: $\mathrm{C}, 74.05, \mathrm{H}, 8.83 ; \mathrm{N}, 11.37$. Found: C , 73.00; H, 8.80; N, 11.40 .

The above data are not inconsistent with structure $\mathbf{2 2 b}$.
Acknowledgment. We are greatful to a referree for suggesting the mechanism of formation of the urea 18 from 11 c .

Registry No.-la, 93-61-8; 1b, 607-00-1; 1c, 3700-30-3; 1d, 2269-63-4; 1e, 2591-86-8; 1f, 23824-50-2; 1g, 519-87-9; 2f, 63641-02-1; 2g, 63641-03-2; 13a, 63641-04-3; 13b, 63641-05-4; 13c, 63641-06-5; 13d, 63641-07-6; 13e, 63641-08-7; 18, 59849-55-7; 22b, 63641-09-8; oxalylchloride, 79-37-8; 5-diphenylamino-2,2-dichloro-3(2 H)-furanone, 636-41-10-1; phosgene, $75-44-5$; N-methyaniline, $100-61-8$; 1 -phe-nyl-5-chlorotetrazole, 14210-25-4.

References and Notes

(1) Contribution No. 474 from the Syntex Institute of Organic Chemistry.
(2) R. A. Abramovitch and E. P. Kyba in "The Chemistry of the Azido Group", S. Patai, Ed., Interscience, London, 1971, pp 221-329; D. V. Banthorpe ibid., pp 397-440; W. Lwowski, ibid., pp 503-554
(3) P. A. S. Smith, Org. React., 3, 337-449 (1946)
(4) H. Wolff, Org. React., 3, 307-336 (1946).
(5) G. Schroeter, Ber., 42, 2336 (1908); 44, 1201 (1911).
(6) G. Landen and H. W. Moore, Tetrahedron Lett., 2513 (1976)
(7) P. A. S. Smith and E. Leon, J. Am. Chem. Soc., 80, 4647 (1958), and references cited therein.
(8) J. von Braun and W. Rudolf, Chem. Ber., 74, 264 (1941); P. K. Kadaba, J Org. Chem., 41, 1073 (1976).
(9) M. R. de Maheas, Bull. Soc. Chim. Fr., 1989 (1962); V. I. Minkin and G. N. Dorofeenko, Russ. Chem. Rev., 29, 599 (1960).
(10) (a) R. Stollé and F. Henke-Stark, J. Prakt. Chem., 124, 261 (1930); (b) W. L. Garbrecht and R. M. Herbst, J. Org. Chem., 18, 1003 (1953).
(11) L. Birkofer and P. Wegner, Org. Synth., 50, 107 (1970).
(12) C. S. Cleaver and C. G. Krespan, J. Am. Chem. Soc., 87, 3716 (1965).
(13) A. Brändström, B. Lamm, and J. Palmertz, Acta Chem. Scand., 28, 699 (1974).
(14) Benzyltrimethylammonium azide and benzyltriethylammonium azide were not sufficiently soluble in DME to be useful as azide ion sources
(15) R. Scheffold and E. Saladin, Angew. Chem., Int. Ed. Engl., 11, 229 (1972).
(16) H. A. Hageman, Org. React., 7, 198-262 (1953).
(17) This was the only case in which the percentage of both the amine and the aldehyde was measured.
(18) Regardless of whether this is the correct mechanism, the presence of azide ion is necessary for the reduction to take place.
(19) C. K. Ingold, "Structure and Mechanism in Organic Chemistry", Cornell University Press, Ithaca, N. Y., 1969, pp 744-750.
(20) H. Balli, Justus Liebigs Ann. Chem., 647, 11 (1961)
(21) H. Balli and F. Kersting, Justus Liebigs Ann. Chem., 647, 1 (1961)
(22) A. Mitrowski, Methoden Org. Chem. (Houben-Weyn, 4th Ed., 8, 172 (1972).
(23) A. J. Speziale and L. R. Smith, J. Org. Chem., 27, 4361 (1962).
(24) O. Wallach, Ber., 32, 1873 (1900).
(25) E. K. Harvill, R. M. Herbst, E. D. Schriner, and E. V. Roberts, J. Org. Chem., 15, 662 (1950).
(26) J. Bacchetti and E. Alemagna, Rend. Ist. Lomb. Accad. Sci., Cl. Sci. Mat. Nat. A, 94, 351 (1960).
(27) J. Vaughan and P. A. S. Smith, J. Org. Chem., 23, 1909 (1958).

Reaction of Di- and Tribromotetrahydro-4H-pyran-4-ones with Bases

Department of Applied Chemistry, Faculty of Engineering, Yokohama National University, Minami-ku, Yokohama, 232, Japan

Received April 7, 1977

The reaction of 3,5 -dibromotetrahydro-4H-pyran-4-ones (la,b) with morpholine in HMPA gave enamino ketones $2 \mathbf{a}, \mathbf{b}$ and $\mathbf{3 a , b}$ as the major products. The reaction of $3,3,5$-tribromotetrahydro-4H-pyran-4-ones ($5 \mathbf{a}, \mathbf{b}$) with silver acetate in acetic acid gave a mixture of bromo α-diketones $\mathbf{8 a}, \mathbf{b}$ and their enol acetates $\mathbf{9 a}, \mathbf{b}$ exclusively. Furthermore, dehydrobromination of 8a,b with DBU or Dabco gave corresponding 3-hydroxy- $4 H$-pyran-4-ones 10a,b. However the reaction of diethyl $3,3,5$-tribromotetrahydro-4H-pyran-4-one-2,6-dicarboxylate (5c) with silver acetate in acetic acid afforded bromo α-diketones 8 c , diethyl 3-hydroxy-4H-pyran-4-one-2,6-dicarboxylate (10 c), and diethyl 3,5-dibromo-4 H -pyran-4-one-2,6-dicarboxylate (11).

Of the simple tetrahydro-4H-pyran-4-ones, only a few have received attention in the literature with respect to their oxidation product.

In this paper, we wish to report the formation of tetrahy-dro-4H-pyran-3,4-diones and their derivatives from 3,5 -dibromo- or 3,3,5-tribromotetrahydro- $4 H$-pyran-4-ones.

Table I. The Reaction of 1 with Morpholine in Several Solvents ${ }^{a}$

Dibromide	Solvent	Total yield, $\%{ }^{b}$	Product ratio ${ }^{\text {c }}$			
			2	3	4	6
1 a	HMPA	46	25	75		Tr
1 b	HMPA	80	26	50	6	18
$1 b^{d}$	HMPA	80		76	6	18
1 a	DMF	34	45	33	11	11
1 b	DMF	72	20	20	40	20
$1 b^{e}$	DMF	55	24	24	48	4
1 a	Ether	32	15	8	77	
1b	Ether	77	8	9	55	28
$1 b^{e}$	Ether	50	10	15	71	4

${ }^{a}$ The reaction was carried out at room temperature $\left(15-18^{\circ} \mathrm{C}\right)$. ${ }^{b}$ Isolated yield. ${ }^{c}$ The ratio was determined by GLC. ${ }^{d}$ Large (10 equiv) excess of morpholine was used. ${ }^{e}$ Cis isomer was used.

3,5-Dibromotetrahydro-4H-pyran-4-ones (1a,b) and 3,3,5-tribromotetrahydro- $4 H$-pyran-4-ones ($5 \mathbf{5 - c}$) were prepared from corresponding tetrahydro- 4 H -pyran-4-ones ${ }^{1 \mathrm{a}-\mathrm{c}}$ with dioxane-dibromide in ether in good yield. The reaction of cis-3,5-dibromotetrahydro- 4 H -pyran-4-one (1a) with 5 equiv of morpholine in HMPA gave 5 -morpholino-2,3-dihydro4 H -pyran-4-one (2a) and 4-morpholino-3,6-dihydro- 2 H -pyran-3-one (3a) without any formation of Favorskii rearrangement product.

However a similar treatment of trans-3,5-dibromo-cis-2,6-dimethyltetrahydro-4H-pyran-4-one (1b) with morpholine afforded enamino ketones $2 b$ and $3 b$ as the major products together with a minor amount of 2,5 -dihydro- 2,5 -di-methylfuran-3-carboxymorpholide (4b) and 4-bromo-2,5-dihydro-2,5-dimethylfuran-3-carboxymorpholide ($6 \mathbf{b}$). The

structures of these products were assigned on the basis of their IR, NMR, and mass spectra, and by elemental analysis.

The reaction of dibromide $\mathbf{l a}, \mathbf{b}$ with morpholine in several solvents was examined and the experimental data, summarized in Table I, suggest that enamino ketones are the main products in polar aprotic solvents such as HMPA, whereas in ether, Favorskii rearrangement products predominate. Isomerization of 2 and 3 was not observed under the reaction conditions, and a large excess of morpholine increased the formation of 3 rather than that of 2 . These solvent effects are parallel to those observed in the reaction of 2,6 -dibromocyclohexanone with secondary amines. ${ }^{2}$ In the 2,6-dimethyl case, trans form 1 b was more reactive than cis form 1 b . This is due

1b

$1 b^{\prime}$

to the trans isomer and axial bromine undergoing a more facile back-side nucleophilic attack at C-5 by morpholine.

A possible route ${ }^{3}$ for the formation of 6 is outlined in Scheme I. Dibromide 1 undergoes disproportionation of bromine to produce tribromide 5, which then suffers a Favorskii rearrangement to give 6 . Although 7 has not been isolated, its presence in the reaction mixture from 1 a was suggested by GLC-mass spectroscopy.

The reaction of $\mathbf{5 a}, \mathrm{b}$ with 6 equiv of morpholine in HMPA at room temperature gave the corresponding Favorskii rearrangement products $\mathbf{6 a , b}$ in quantitative yield. These results

suggest that the proton at $\mathrm{C}-5$ was easily abstracted by morpholine, followed by ejection of the C-3 bromine atom to produce a cyclopropanone intermediate, which is then cleavaged to compound $\mathbf{6 a}, \mathbf{b}$.
We next examined the reaction of $5 \mathrm{a}, \mathrm{b}$ with silver acetate in acetic acid, which gave hydroxypyrones $8 \mathbf{a}, \mathbf{b}$ and their enol

a, $\mathrm{R}=\mathrm{H} \quad(90 \%)$
b, $\mathrm{R}=\mathrm{CH}_{3}(93 \%)$
acetates $9 a, b$ in good yield. The proportion of these products ($8 \mathrm{a}, \mathrm{b}$) and ($9 \mathrm{a}, \mathrm{b}$) was determined by NMR and GLC analysis. In this case, no Favorskii rearrangement product was observed in any solvents. The reaction of 5 with silver acetate in acetonitrile afforded $9(\mathbf{a}, 90 \% ; \mathbf{b}, 88 \%)$ as a single product. Ace-

tate 9 was also obtained from 8 by treatment with acetic anhydride in the presence of sodium acetate.

Similar treatment of $5 \mathrm{c}\left(\mathrm{R}=\mathrm{CO}_{2} \mathrm{Et}\right)$ with silver acetate gave hydroxypyrone $8 \mathbf{c}(20 \%$), diethyl meconate ($10 \mathrm{c}, 20 \%$), and diethyl 3,5 -dibromochelidonate ($11,40 \%$). It is suggested that in the case of $\mathrm{R}=\mathrm{CO}_{2} \mathrm{Et}$, the proton at $\mathrm{C}-2$ in the compound of 8 c initially produced is easily abstracted by weak base, permitting dehydrobromination to diethyl meconate (10c).

Finally, we investigated the dehydrobromination of $\mathbf{8 a}, \mathbf{b}$ with such strong bases as DBU and Dabco. The reaction of $8 \mathbf{a}$ with 1,8 -diazabicyclo [5.4.0]undecene (DBU) in benzene at room temperature afforded pyromeconic acid (10a). Similarly, 6 -methyl maltol (10b) was obtained by the treatment of $\mathbf{8 b}$

a, $R=H$
b, $\mathrm{R}=\mathrm{CH}_{3}$
with diazabicyclo[2.2.2]octane (Dabco) in pyridine. The structures of 3 -hydroxy-4H-pyran-4-ones 10a-c were confirmed by agreement with IR, NMR, and mass spectra and mixed melting point determination with that of those authentic samples.

Experimental Section

General. All the points are uncorrected. Infrared spectra were run on a Hitachi Model 215 spectrophotometer. Proton nuclear magnetic resonance spectra were recorded on a JEOL C-60 spectrometer with tetramethylsilane as an internal reference. The mass spectra were determined on a Hitachi RMU-6E spectrometer. For column chromatography Wakogel C-200 (Wako Pure Chemical Industries) was used. cis-2,6-Dimethyltetrahydro- 4 H -pyran-4-one ${ }^{1 \mathrm{~b}}$ [bp $61^{\circ} \mathrm{C}$ (14 mm Hg)] and cis-2,6-diethoxycarbonyltetrahydro-4H-pyran-4-one ${ }^{1 \mathrm{c}}$ ($\mathrm{mp} 82-83^{\circ} \mathrm{C}$) were prepared by the reported method.
cis-3,5-Dibromotetrahydro-4 \boldsymbol{H}-pyran-4-one (1a). Bromine $(16.2 \mathrm{~g}, 0.1 \mathrm{~mol})$ was added into dioxane (64 g) with stirring over a period of 30 min . Tetrahydro- $4 H$-pyran- 4 -one ${ }^{1 \mathrm{a}}(5.0 \mathrm{~g}, 0.05 \mathrm{~mol})$ in 20 mL of ether was added to the mixture at $0^{\circ} \mathrm{C}$, and the mixture was then stirred for 2 h . The resulting slightly yellow tinged solution was poured into 20 mL of water. The organic layer was separated and the aqueous layer was extracted with ether. The combined ethereal solution was well washed with water and the solution was dried (MgSO_{4}). After evaporation of the ether, the residue was recrystallized from dichloromethane to give $10.5 \mathrm{~g}(82 \%)$ of 1a: $\mathrm{mp} 156-157^{\circ} \mathrm{C}$ (lit..4 $m p 156-157^{\circ} \mathrm{C}$); IR (KBr) $1745 \mathrm{~cm}^{-1}$.
trans- and cis-3,5-Dibromo-cis-2,6-dimethyltetrahydro$4 H$-pyran-4-one ($\mathbf{1 b}$ and $1 \mathbf{b}^{\prime}$). Bromination of $c i s-2,6$-dimethylte-trahydro- 4 H -pyran- 4 -one $\mathrm{e}^{1 \mathrm{~b}}$ at $-15^{\circ} \mathrm{C}$ by a method similar to that described for la afforded only trans dibromide $1 \mathrm{~b}(87 \%)$: mp 42-43 ${ }^{\circ} \mathrm{C}$; IR (KBr) $1735 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 1.38(\mathrm{~d}, 3 \mathrm{H}, J=6.0 \mathrm{~Hz}$), $1.57(\mathrm{~d}, 3 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.79(\mathrm{~m}, 2 \mathrm{H}, 2$ - and 6 -axial protons), 4.33 (d, $1 \mathrm{H}, J=2.0 \mathrm{~Hz}, 3$-equatorial proton), $5.02(\mathrm{~d}, 1 \mathrm{H}, J=11 \mathrm{~Hz}, 5$-axial proton).

Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}_{2}$: $\mathrm{C}, 29.40 ; \mathrm{H}, 3.52 ; \mathrm{Br}, 55.88$. Found: C , 29.40; H, 3.51; Br, 55.69.

When this reaction was carried out at $0^{\circ} \mathrm{C}$, a mixture of 1 b and cis-dibromide $1 \mathbf{b}^{\prime}$ was obtained and the mixture was then chromatographed on a silica gel column using benzene-hexane (1:2) as eluent to give $1 \mathbf{b}(66.5 \%)$ and $1 \mathbf{b}^{\prime}(13.5 \%)$: mp $149-150{ }^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}) 1745$ cm^{-1}; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.55(\mathrm{~d}, 6 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.75(\mathrm{dq}, 2 \mathrm{H}, J=12$ and $6.0 \mathrm{~Hz}, 2$ - and 6 -axial protons), $4.40(\mathrm{~d}, 2 \mathrm{H}, J=12 \mathrm{~Hz}, 3$ - and 5 -axial protons).

Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}_{2}$: C, 29.40; $\mathrm{H}, 3.52 ; \mathrm{Br}, 55.88$. Found: C, 29.47; H, 3.60; Br, 55.88.

The Reaction of 1a with Morpholine. Morpholine ($13.3 \mathrm{~g}, 0.15$ mol) was added to a solution of $1 \mathrm{a}(7.89 \mathrm{~g}, 0.03 \mathrm{~mol})$ in 50 mL of HMPA with stirring at $0^{\circ} \mathrm{C}$. After the mixture was stirred for 24 h at room temperature, dry ether was added, and the precipitated morpholine hydrobromide was filtered off. Ether, excess morpholine, and HMPA were removed from the filtrate under vacuum and the residue
[small amounts of $\mathbf{6 a}$ and 7 a could be detected by GLC: 7a, $\mathrm{m} / \mathrm{e} 185$ $\left(\mathrm{M}^{+}\right)$] was chromatographed on a silica gel column using benzeneethyl acetate (9:1). The earlier fraction gave $1.9 \mathrm{~g}(34.5 \%)$ of 3 a (mp $77.5-79{ }^{\circ} \mathrm{C}$) and the latter fraction gave $0.63 \mathrm{~g}(11.5 \%)$ of $2 \mathrm{a}(\mathrm{mp}$ $83.5-85.0^{\circ} \mathrm{C}$). 2a: $\mathrm{IR}(\mathrm{KBr}) 1670,1600 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.55(\mathrm{t}$, $2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 2.85(\mathrm{~m}, 4 \mathrm{H}), 3.81(\mathrm{~m}, 4 \mathrm{H}), 4.42(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz})$, 7.13 ($\mathrm{s}, 1 \mathrm{H}$); mass (m / e) $183\left(\mathrm{M}^{+}\right), 98$ (base).

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NO}_{3}: \mathrm{C}, 59.00 ; \mathrm{H}, 7.15 ; \mathrm{N}, 7.65$. Found: C, 58.59; H, 7.09; N, 7.20.

3a: $\operatorname{IR}(\mathrm{KBr}) 1675,1615 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.93(\mathrm{~m}, 4 \mathrm{H}), 3.84$ $(\mathrm{m}, 4 \mathrm{H}), 4.21(\mathrm{~s}, 2 \mathrm{H}), 4.52(\mathrm{~d}, 1 \mathrm{H}, J=3.0 \mathrm{~Hz}), 6.05(\mathrm{t}, 1 \mathrm{H}, J=3.0$ Hz); mass (m / e) $183\left(\mathrm{M}^{+}\right.$), 67 (base).

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NO}_{3}: \mathrm{C}, 59.00 ; \mathrm{H}, 7.15 ; \mathrm{N}, 7.65$. Found: C , 58.79; H, 7.17; N, 7.39.

This reaction was carried out in ether; from 1 a ($7.89 \mathrm{~g}, 0.03$ mole) and 13.3 g (0.15 mole) of morpholine, $\mathbf{2 a}(0.14 \mathrm{~g}, 2.5 \%), 3 \mathbf{a}(0.27 \mathrm{~g}$, 5.0%), and $4 \mathrm{a}\left(1.35 \mathrm{~g}, 24.5 \%\right.$) were obtained. 4a: $n^{20} \mathrm{D} 1.5123$; IR (neat) $1650,1613 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 3.57(\mathrm{~s}, 8 \mathrm{H}), 4.65(\mathrm{~s}, 4 \mathrm{H}), 5.87(\mathrm{~s}, 1$ H); mass (m / e) $183\left(\mathrm{M}^{+}\right)$.
The Reaction of 1 b with Morpholine. Similar reaction was carried out according to the procedure for la described above. In place of $\mathbf{1 a}, 1 \mathbf{b}$ ($8.7 \mathrm{~g}, 0.03$ mole) in HMPA was used, and the resulting oil was chromatographed on a silica gel column using benzene as eluent to afford $\mathbf{2 b}(1.26 \mathrm{~g}, 25 \%), \mathbf{3 b}(2.52 \mathrm{~g}, 40 \%), \mathbf{4 b}(0.42 \mathrm{~g}, 5.0 \%)$, and $\mathbf{6 b}$ $(0.87 \mathrm{~g}, 10 \%) .2 \mathrm{~b}: \mathrm{mp} 85-86^{\circ} \mathrm{C}$; IR (KBr) $1690,1615 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.33(\mathrm{~d}, 3 \mathrm{H}, J=6.0 \mathrm{~Hz}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz})$, $2.30(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}), 2.90(\mathrm{~m}, 4 \mathrm{H}), 3.60(\mathrm{~m}, 5 \mathrm{H})$; mass $(\mathrm{m} / \mathrm{e}) 211$ (M^{+}), 43 (base).
Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{3}: \mathrm{C}, 62.54 ; \mathrm{H}, 8.11 ; \mathrm{N}, 6.63$. Found: C, 63.08; H, 8.54; N, 6.58 .

3b: $n^{20}{ }_{\mathrm{p}} 1.5068$; IR (neat) $1690,1615 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.30(\mathrm{~d}$, $6 \mathrm{H}, J=7.0 \mathrm{~Hz}), 2.79(\mathrm{~m}, 4 \mathrm{H}), 3.77(\mathrm{~m}, 5 \mathrm{H}), 4.46(\mathrm{q}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz})$, $5.57(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz})$; mass $(m / e) 211\left(\mathrm{M}^{+}\right), 43$ (base). 4b: $n^{20} \mathrm{D}$ 1.5023; IR (neat) $1655,1615 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.24(\mathrm{~d}, 3 \mathrm{H}, J=3.0$ $\mathrm{Hz}), 1.31(\mathrm{~d}, 3 \mathrm{H}, J=3.0 \mathrm{~Hz}), 3.55(\mathrm{~s}, 8 \mathrm{H}), 4.90(\mathrm{brs}, 2 \mathrm{H}), 5.70(\mathrm{~s}, 1$ H); mass (m / e) $211\left(\mathrm{M}^{+}\right), 43$ (base).
Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{3}$: C, 62.54; H, 8.11; N, 6.63. Found: C, 62.23; H, 8.32; N, 6.58 .

6b: mp 71-73 ${ }^{\circ} \mathrm{C} ; \mathrm{IR}(\mathrm{KBr}) 1655,1610 \mathrm{~cm}^{-1} ; \mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta 1.26(\mathrm{~d}$, $3 \mathrm{H}, J=5.0 \mathrm{~Hz}), 1.36(\mathrm{~d}, 3 \mathrm{H}, J=5.0 \mathrm{~Hz}), 3.60(\mathrm{~s}, 8 \mathrm{H}), 4.55(\mathrm{~m}, 2 \mathrm{H})$; mass (m / e) 276/274 ($\mathrm{M}^{+}-\mathrm{CH}_{3}$), 43 (base).

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{BrNO}_{3}: \mathrm{C}, 45.53 ; \mathrm{H}, 5.56 ; \mathrm{Br}, 27.54 ; \mathrm{N}, 4.83$. Found: C, $45.61 ; \mathrm{H}, 5.52 ; \mathrm{Br}, 27.79 ; \mathrm{N}, 4.69$.
3,3,5-Tribromotetrahydro-4 H-pyran-4-one (5a). Tetrahy. dro- $4 H$-pyran- 4 -one ($3.5 \mathrm{~g}, 0.035 \mathrm{~mol}$) in 20 mL of ether was added to a stirred mixture of 30 mL of dioxane and $16.8 \mathrm{~g}(0.105 \mathrm{~mol})$ of bromine at room temperature. After the mixture was stirred for 6 h at $28-30^{\circ} \mathrm{C}$, the resulting reaction mixture was then poured into water. The organic layer was separated and the aqueous layer was extracted with ether. The combined ethereal solution was washed with water, dried, and evaporated under reduced pressure. Recrystallization of the residue (13.7 g) from benzene gave 10.3 g of $5 \mathrm{a}, \mathrm{mp}$ $131.5-132.5^{\circ} \mathrm{C}$, in 86.5% yield: IR (KBr$) 1740 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 3.60(\mathrm{~d}, 1 \mathrm{H}, J=12 \mathrm{~Hz}), 4.04(\mathrm{~d}, 1 \mathrm{H}, J=12 \mathrm{~Hz}), 4.40(\mathrm{~m}, 1 \mathrm{H}), 4.53$ (d, $1 \mathrm{H}, J=12 \mathrm{~Hz}$), $5.63(\mathrm{~d} \mathrm{~d}, 1 \mathrm{H}, J=7.0$ and $12 \mathrm{~Hz}, 5$-axial proton).

Anal. Calcd for $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Br}_{3} \mathrm{O}_{2}$: $\mathrm{C}, 17.83 ; \mathrm{H}, 1.49 ; \mathrm{Br}, 71.17$. Found: C , 17.83; H, 1.50; Br, 71.44 .

The following compounds were also prepared from cis-2,6-disubstituted tetrahydro-4 H-pyran-4-ones: ${ }^{1 \mathrm{~b}, \mathrm{c}}$ 3,3,5-Tribromo-cis-2,6-dimethyl tetrahydro-4 \mathbf{H}-pyran-4-one (5 b), mp $87-88^{\circ} \mathrm{C}$, in 89% yield: IR $(\mathrm{KBr}) 1745 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 1.54(\mathrm{~d}, 3 \mathrm{H}, J=6.0$ $\mathrm{Hz}), 1.60(\mathrm{~d}, 3 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.65(\mathrm{q}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.80(\mathrm{dq}, 1 \mathrm{H}$, $J=6.0$ and 11 Hz$), 5.15(\mathrm{~d}, 1 \mathrm{H}, J=11 \mathrm{~Hz}, 5$-axial proton).
Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{Br}_{3} \mathrm{O}_{2}$: C, $23.04 ; \mathrm{H}, 2.49 ; \mathrm{Br}, 65.70$. Found: C , 23.14; H, 2.53; Br, 65.68.

Diethyl 3,3,5-tribromotetrahydro-4 H-pyran-4-one-cis-2,6dicarboxylate (5c), $\mathrm{mp} 56-58^{\circ} \mathrm{C}$, in 85% yield: IR (KBr) $1750 \mathrm{~cm}^{-1}$; $\mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta 1.38(\mathrm{t}, 6 \mathrm{H}, J=7.0 \mathrm{~Hz}), 4.35(\mathrm{~m}, 6 \mathrm{H}), 5.18(\mathrm{~d}, 1 \mathrm{H}, J$ $=11 \mathrm{~Hz}, 5$-axial proton).
Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{Br}_{3} \mathrm{O}_{6}$: C, 27.47; $\mathrm{H}, 2.73 ; \mathrm{Br}, 49.84$. Found: C, 27.63; H, 2.65; Br, 49.84.

The Reaction of 5a with Morpholine. Morpholine ($5.2 \mathrm{~g}, 0.06$ $\mathrm{mol})$ was added gradually to a stirred solution of $3.37 \mathrm{~g}(0.01 \mathrm{~mol})$ of 5 a in 5 mL of HMPA at $0^{\circ} \mathrm{C}$, and the mixture was then stirred for 24 h at room temperature. Dry ether was added to the reaction mixture and the precipitated morpholine hydrobromide was filtered off. Ether, morpholine, and HMPA were removed in vacuo from the filtrate and the residue was chromatographed on a silica gel column. Elution with benzene gave 2.6 g of 6 a as crystals, $\mathrm{mp} 71-73^{\circ} \mathrm{C}$, in quantitative yield:

IR (KBr) $1660(\mathrm{C}=\mathrm{O}), 1620(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$; $\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.70(\mathrm{br}$ $\mathrm{s}, 8 \mathrm{H}), 4.77$ (br s, 4 H).

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{BrNO}_{3}: \mathrm{C}, 41.24 ; \mathrm{H}, 5.72 ; \mathrm{Br}, 30.49 ; \mathrm{N}, 5.34$. Found: C, 41.63; H, 4.66; Br, 30.42; N, 5.21.

Similarly, 4-bromo-2,5-dihydro-2,5-dimethylfuran-3-carboxymorpholide ($6 \mathbf{b}$) was obtained as crystals, $\mathrm{mp} 71-72^{\circ} \mathrm{C}$, in quantitative yield: $\mathrm{IR}(\mathrm{KBr}) 1655(\mathrm{C}=0), 1610(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.26(\mathrm{~d}, 3 \mathrm{H}, J=5.0 \mathrm{~Hz}), 1.36(\mathrm{~d}, 3 \mathrm{H}, J=5.0 \mathrm{~Hz}), 3.60(\mathrm{br} \mathrm{s}$, $8 \mathrm{H}), 4.55$ ($\mathrm{m}, 2 \mathrm{H}$).
Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{BrNO}_{3}: \mathrm{C}, 45.53 ; \mathrm{H}, 5.56 ; \mathrm{Br}, 27.54 ; \mathrm{N}, 4.83$. Found: C, 45.61; H, 5.52; Br, 27.79; N, 4.69.
The Reaction of 5a with Silver Acetate. A mixture of 3.79 g (11.2 mmol) of 5 a and 6.0 g (40 mmol) of silver acetate in 30 mL of acetic acid was warmed at $28-30^{\circ} \mathrm{C}$ with stirring. After the mixture was stirred for 3 h , the precipitated silver bromide was filtered off, and acetic acid was removed in vacuo. The residue was chromatographed on a silica gel column using benzene as eluent to give a mixture of 2.1 g of $8 \mathbf{a}$ and $9 \mathbf{a}$ in 90% yield ($8 \mathbf{a} / 9 a=2: 1$; by GLC and NMR spectroscopic assay). 8a: mp $77-78^{\circ} \mathrm{C}$; IR (KBr) $3350(\mathrm{OH}), 1675(\mathrm{C}=0)$, $1650(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 4.30(\mathrm{~m}, 2 \mathrm{H}), 4.57(\mathrm{~m}, 2 \mathrm{H}), 5.96$ (brs, 1 H).

Anal. Calcd for $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{BrO}_{3}: \mathrm{C}, 31.12 ; \mathrm{H}, 2.61 ; \mathrm{Br}, 41.40$. Found: C , 31.17 ; H, 2.23; Br, 41.82.

9a: bp $91-93^{\circ} \mathrm{C}(0.15 \mathrm{~mm} \mathrm{Hg}) ; \mathrm{mp} 50-51^{\circ} \mathrm{C}$; IR (KBr) 1780,1710 $(\mathrm{C}=\mathrm{O}), 1640(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$; $\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.38(\mathrm{~s}, 3 \mathrm{H}), 4.30(\mathrm{~s}, 2 \mathrm{H})$, 4.65 ($\mathrm{s}, 2 \mathrm{H}$); mass (m / e) 236/234 (M^{+}), 43 (base).

The Reaction of $\mathbf{5 b}$ with Silver Acetate. By the method similar to that described above, reaction temperature was $40-45^{\circ} \mathrm{C}$ for 3 h ; 7.33 g of 5 b afforded a mixture of 4.75 g of $8 \mathrm{~b}\left(\mathrm{mp} 62-63^{\circ} \mathrm{C}\right)$ and 9 b [bp $108-110^{\circ} \mathrm{C}(0.25 \mathrm{~mm} \mathrm{Hg}), \mathrm{mp} 125.5-126.5^{\circ} \mathrm{C}$] in 93% yield. $(8 b / 9 b=1: 1)$. Pure $\mathbf{8 b}$ and $9 b$ were obtained by preparative GLC $\left(20 \%\right.$ Silicon DC- 200 column $120^{\circ} \mathrm{C}$). 8b: IR (KBr) $3340(\mathrm{OH}), 1680$ $(\mathrm{C}=\mathrm{O}), 1640(\mathrm{C}==\mathrm{C}) \mathrm{cm}^{-1} ; \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.43(\mathrm{~d}, 3 \mathrm{H}, J=6.0 \mathrm{~Hz})$, $1.55(\mathrm{~d}, 3 \mathrm{H}, J=6.0 \mathrm{~Hz}), 4.20(\mathrm{~d} \mathrm{q}, 1 \mathrm{H}, J=2.0$ and 6.0 Hz$), 4.65(\mathrm{dq}$, $1 \mathrm{H}, J=2.0$ and 6.0 Hz$), 6.33(\mathrm{~s}, 1 \mathrm{H})$.

Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{BrO}_{3}: \mathrm{C}, 38.04 ; \mathrm{H}, 4.10 ; \mathrm{Br}, 36.15$. Found: C , 38.10; H, 4.19; Br, 36.54 .

9b: IR (KBr) $1780,1710(\mathrm{C}=\mathrm{O}), 1630(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$; $\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 1.40(\mathrm{~d}, 3 \mathrm{H}, J=6.0 \mathrm{~Hz}), 1.62(\mathrm{~d}, 3 \mathrm{H}, J=6.0 \mathrm{~Hz}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 4.25$ (d q, $1 \mathrm{H}, J=2.0$ and 6.0 Hz), $4.77(\mathrm{dq}, 1 \mathrm{H}, J=2.0$ and 6.0 Hz).

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{BrO}_{4}: \mathrm{C}, 41.09 ; \mathrm{H}, 4.21 ; \mathrm{Br}, 30.37$. Found: C , 41.02; H, 4.22; Br, 30.03 .

The Reaction of 5 c with Silver Acetate. A mixture of 3.30 g of 5 c and 4.0 g of silver acetate in 14 mL of acetic acid was warmed at $50-55^{\circ} \mathrm{C}$ for 6 h . After workup similar to that of 5 a described above, the residue was chromatographed on silica gel and eluted with ben-zene-isopropyl ether ($4: 1$) to give 1.2 g of 11 and a mixture of 8 c and 10c. The latter fraction was rechromatographed on silica gel using benzene-isopropyl ether ($6: 1$) to afford pure 0.6 g of 8 c and 0.4 g of 10c. 11: mp 121-122 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{5} \mathrm{mp} 126^{\circ} \mathrm{C}$); IR (KBr) 1745 and 1660 $(\mathrm{C}=0) \mathrm{cm}^{-1} ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.42(\mathrm{t}, 6 \mathrm{H}, J=7.0 \mathrm{~Hz}), 4.40(\mathrm{q}, 4 \mathrm{H}$, $J=7.0 \mathrm{~Hz}$). 8c: $\mathrm{mp} 85-87^{\circ} \mathrm{C}$; IR (KBr) $3420(\mathrm{OH}), 1740,1725,1690$ $(\mathrm{C}=\mathrm{O}), 1645(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.30(\mathrm{t}, 6 \mathrm{H}, J=7.0 \mathrm{~Hz})$, $4.27(\mathrm{q}, 4 \mathrm{H}, J=7.0 \mathrm{~Hz}), 5.27(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 5.43(\mathrm{~d}, 1 \mathrm{H}, J=2.0$ $\mathrm{Hz}), 9.57(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$.

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}_{7}$: $\mathrm{C}, 39.19 ; \mathrm{H}, 3.89 ; \mathrm{Br}, 23.70$. Found: C , 39.53; H, 4.13; Br, 23.21.

10c: mp 111-112 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{6} 111.5^{\circ} \mathrm{C}$); IR (KBr) $3300(\mathrm{OH}), 1745,1660$ $(\mathrm{C}=0), 1610,1595(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.36(\mathrm{t}, 3 \mathrm{H}, J=7.0$ $\mathrm{Hz}), 1.40(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 4.43(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 4.50(\mathrm{q}, 2 \mathrm{H}$, $J=7.0 \mathrm{~Hz}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$.

3-Hydroxy-4 \boldsymbol{H}-pyran-4-one (10a). To a mixture of 181 mg of 8 a in 3 mL of benzene was added 220 mg of 1,8 -diazabicyclo[5.4.0]undecene at $0^{\circ} \mathrm{C}$. After the mixture was stirred for 48 h at $16-18^{\circ} \mathrm{C}, 0.2$ mL of concentrated hydrochloric acid was added, and the precipitated mass was filtered off and extracted with chloroform. The organic layer was washed with water and evaporated to leave an oil of 39 mg . The oil was distilled under 50 mm Hg reduced pressure and then sublimation gave 19 mg of pure $10 \mathrm{a}: \mathrm{mp} 115-117^{\circ} \mathrm{C}$ (lit..$^{7 \mathrm{mp} 117^{\circ} \mathrm{C} \text {). A }}$ mixed melting point determination with an authentic sample from comenic acid ${ }^{7}$ indicated no depression.

3-Hydroxy-2,6-dimethyl-4 \boldsymbol{H}-pyran-4-one (10b). To a mixture of 2.0 g of $\mathbf{8 b}$ and $\mathbf{9 b}(\mathbf{8 b} / \mathbf{9 b}=1: 1)$ in 6 mL of pyridine was added 0.80 g of diazabicyclo[2.2.2]octane at room temperature. After the mixture was stirred for 2 h at $70-75^{\circ} \mathrm{C}$, the precipitate was filtered off and pyridine was removed under reduced pressure. The residue was then chromatographed on silica gel using benzene as eluent to give crude $10 \mathrm{~b}(0.9 \mathrm{~g})$. Sublimation of the crude crystals afforded a pure sample of $10 \mathrm{~b}(0.6 \mathrm{~g}), \mathrm{mp} 162-163^{\circ} \mathrm{C}$ (lit..$^{\mathrm{mp}} 162.5^{\circ} \mathrm{C}$), in 53% yield. The infrared spectrum and the other chemical properties were identical with those of authentic sample. ${ }^{9}$

Registry No.--1a, 63641-11-2; 1b, 63599-80-4; 1b', 63599-81-5; 2a, 63599-82-6; 2b, 63599-83-7; 3a, 63599-84-8; 3b, 63599-85-9; 4a, 63599-86-0; 4b, 63599-87-1; 5a, 63599-88-2; 5b, 63599-89-3; 5c, 63599-90-6; 6a, 63599-91-7; 6b, 63599-92-8; 8a, 63599-93-9; 8b, 63599-94-0; 8c, 63599-95-1; 9a, 63599-96-2; 9b, 63599-97-3; 10c, 729-63-5; 11, 843-08-3; tetrahydro-4H-pyran-4-one, 29943-42-8; cis-2,6-dimethyltetrahydro-4H-pyran-4-one, 14505-80-7; morpholine, 110-91-8.

Reference and Notes

(1) (a) Terahydro-4/-pyran-4-one $\left[\mathrm{bp} 58-59^{\circ} \mathrm{C}(15 \mathrm{~mm} \mathrm{Hg})\right]$ was obtained by means of ozonolysis of 4-methylenetetrahydro-4 H -pyran in 80% yield: ref bp $59-60^{\circ} \mathrm{C}(13 \mathrm{~mm} \mathrm{Hg})$, G. R. Owen and C. B. Reese, J. Chem. Soc. C, 2401 (1970). (b) C. Eskenazi, H. Sliwa, and P. Maitte, Bull. Soc. Chim. Fr., 2951 (1971). (c) J. Attenburrow, J. Chem. Soc., 571 (1945).
(2) K. Sato, S. Inoue, M. Ohashi, and S. Kuranami, Chem. Lett., 405 (1975).
(3) T. Wakui, Y. Otsuji, and E. Imoto, Bull. Chem. Soc. Jpn., 47, 2267 (1974).
(4) E. Sorkin, W. Krahenbühl, and H. Erlenmeyer, Helv. Chim. Acta, 31, 65 (1948).
(5) J. P. Wibaut and R. J. C. Kleipool. Recl. Trav. Chim. Pays-Bas, 66, 24 (1947).
(6) K. Takeuchi and K. Kaneko, Jpn. J. Pharm. Chem., 25, 22 (1953); Chem. Abstr., 48, 677 (1954).
(7) M. A. Spielman and M. Freifelder, J. Am. Chem. Soc., 69, 2908 (1947).
(8) J. N. Gollie and T. Tickel, J. Chem. Soc., 81, 1005 (1902).
(9) K. Sato, S. Inoue, and M. Ohashi, Bull. Chem. Soc. Jpn., 46, 1288 (1973).

